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Abstract 

A new graph theory-based methodology is proposed for the statistical evaluation of 
the link between the structure and the chemica~iological activity of organic molecules. 
The computer-aided analysis involves the heuristic processing of molecules as chemical 
graphs which axe decomposed into their component subgraphs. Common topological 
features among the subgraphs axe then statistically isolated, and a set of rules is developed 
that can be used to explain the activities of the analyzed compounds as well as predict 
the activities of new compounds. The validity of the methodology is demonstrated by 
its application to actual experimental data. 

1. Introduction 

The formulation of  topological molecular descriptors by the application of 
graph theory to chemical problems is a topic of considerable interest to m a n y  
researchers working in the area of medicinal chemistry. Previous investigations 
have provided evidence that biological properties (mutagenicity, toxicity, etc.) can 
be viewed as functions of topology-based parameters [1]. The goal of such an 
approach is to identify the appropriate submolecular features that are useful for the 
recognition of the reactive regions of biologically-important molecules. The challenge 
to the researcher is to find an adequate method with which molecular entities can 
be represented mathematically by the appropriate treatment of an input chemical 
code. 

In this work, we propose that the union of two independent disciplines - 
graph theory and artificial intelligence - can serve to provide a rather unique 
approach to the problems confronted by workers in the area of QSAR - quantitative 
structure/activity relationships. Graph theory offers a simplicity in the representation 
of otherwise often complex molecular structures in addition to its primary function 
- the numerical quantification of submolecular features. On the other hand, expert 
system analysis provides the tools for taking this graph-theoretical information as 
input data and processing it heuristically, with the final product being one or more 
logical statements (in the finite mathematical sense) that explain data that was 
previously unmanageable. 
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The usefulness of the proposed methodology will be demonstrated by its 
application to the analysis of two different data bases; a set of 122 compounds 
classified as acids and nonacids, and a set of 64 nitrosoamines classified as rat 
carcinogens and noncarcinogens. 

2. Graph-theoretical representation of data 

There are a multitude of methods provided by graph theory which have been 
employed to represent or numerically quantitate the chemical graph [2]. A common 
procedure is to assign a weight to each vertex (atom) based on the structural 
environment of the atom, perform a given mathematical operation on each weight 
or group of weights, and then to perform a summation over the entire molecule [3]. 
The index that results is then assumed to represent that molecule as a correlation 
is sought between structure (as reflected by the magnitude of the index) and a 
particular activity [4]. The activity can range from something as simple to measure 
as pH to something as complicated as "lethal dose", where the determination is 
costly and may involve years of extensive animal testing. 

The hypothesis behind the following methodology is that current graph- 
theoretical methods over-emphasize the compression of the molecular graph into a 
single numerical entity (index). Further, it is hereby proposed that the reduction of 
many different structural features into a single representative value for an entire 
molecule is an unrealistic goal. The individual and possibly unique structural 
environment of each atom becomes a term in a summation that mixes and, in a 
sense, averages everything together. Methodologies that attempt to address this 
issue can be found in the current literature [5,6]. The alternative approach offered 
here is that the particular structural environment of each non-hydrogen atom within 
the molecule be characterized by a parameter of dimension greater than one, a k- 
dimensional vector (1 < k < number of atoms in the molecule) for our purposes. 
Each molecule is now represented by a matrix, wherein each row characterizes the 
structural environment of a heavy atom (non-hydrogen atom) within the molecule, 
as demonstrated below for compound 1 of the acid/nonacid data base. 

The input information for the formulation of these graph-theoretical entities 
is in the form of a linear code which is translated into a connection table (connectivity 
matrix) which identifies the atoms, their connectivity, and their bond multiplicity. 
This modified connectivity matrix [Cij] is then transformed into a distance matrix 
[D/j] which contains the topological information required to construct the vectors 
to be used to describe the structural environment of each atom. The structure and 
atom numbering for compound 1 of table 1 is given in fig. 1, and the resulting 
distance matrix is given in table 2(a). As can be seen, these distances are not based 
on actual bond lengths but are instead distances in the graph-theoretical sense. 

Table 2(b) shows the vector representation of each heavy atom of com- 
pound 1 obtained by counting the number of equivalent elements in each row (atom) 
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Table 1 

The training set (see text for explanation) Scale: acidity = - 1 0  pka + 90 

Acidity KLN code Chemical formula Compound no. 

90 XDXX CH(NO2) 3 1 
90 DYMYMYM CH(SO2CH3) 3 2 
90 DC3NC3NC3N CH(CN)3 3 

88 FCTKFF F3CCOOH 4 
83 GCTKGG C13CCOOH 5 
77 KT'FK HOOCCOOH 6 
77 GDTKG Cl~CHCO2H 7 
73 RXTK CH2NO2COOH 8 
64 FRTK FCH2COOH 9 

62 KTRTK HOOC CH2COOH 10 

61 GRTK C1 CH2CO2H 11 
61 MRDGTK CH3CHzCH C1 COOH 12 
56 X*TK NO2-Ph-COOH 13 
52 KRTK HOCH2COOH 14 
51 MC2DD2DD2CTK/ o-toluic acid 15 
50 MDGRTK CH3CH C1 CH2COOH 16 
50 XRX CH2(NO2) 2 17 
50 G*TK C1-Ph-COOH 18 
50 B*TK Br-Ph-COOH 19 
48 KT=2TK HOOC(CHz)2COOH 20 
48 *TK Ph-COOH 21 
47 KT = 3TK HOOC(CH2)3COOH 22 
46 M*TK p-toluic acid 23 
46 KT=4TK HOOC(CH2)4COOH 24 

45 MO*TK MeO-Ph-COOH 25 
45 KT = 5TK HOOC(CH2)sCOOH 26 
45 KT=6TK HOOC(CH2)6COOH 27 
45 KT=7TK HOOC(CH2)TCOOH 28 

44 KT= 8TK HOOC(CH2)sCOOH 29 

44 G=3TK CI(CH2)3COOH 30 
42 MTK CH3CO2H 31 
42 M= 2TK CH3(CHz)2COOH 32 
41 MRTK CH3CH2COOH 33 
41 M = 3TK CH3(CH2)3COOH 34 

30 DTMTMTM CH(C=O CH3) 3 35 
10 *J Ph-SH 36 
10 MTRTM CH3C=O CH2C=O CH 3 37 
10 * K Pheno 1 38 

10 RC3NC3N CH2(CN)2 39 

10 RYMYM CH2(SO2CH3) 2 40 

• . .  continued 
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Table 1 (continued) 

Acidity KLN code Chemical formula Compound no. 

10 MRK CHaCH2OH 41 
10 RD2DD2D/ Cyclopentadiene 42 
10 X*A NO2-Ph-NH 2 43 

10 D*C2DD2DD2C)C2DD2DD2C)/ 9-phenyl fluorene 44 

10 RD2DC2DD2DD2C)I Indene 45 

10 MTM CH3C=O CH 3 46 
10 RC2DD2DD2C)C2DD2DD2C)/ Fluorene 47 

10 *C3D Phenylacetylene 48 

10 C2DR* * * 1,1,3-triphenylpropene 49 

10 *A Ph-NH 2 50 

10 M*A Me-Ph-NH 2 51 

10 MYM CH3SO2CH 3 52 
10 D* ** (Ph)3CH 53 

10 *R* (Ph)2CH 2 54 
10 M* Toluene 55 
10 D2DD2DD2D/ Benzene 56 
10 RRR/ Cyclopropane 57 

10 MDM* Cumene 58 

10 DC2DD2DD2C)DC2DD2DD2C)/C2D Tripticene 59 

10 DC2C/*** Triphenylcyclopropene 60 
10 RRRR/ Cyclobutane 61 

10 R = 4/ Cyclopentane 62 

10 R =5/ Cyclohexane 63 

10 =4 Butane 64 

10 =5 Pentane 65 

10 =6 Hexane 66 
10 =7 Heptane 67 

10 =8 Octane 68 

10 =9 Nonane 69 

10 =9=6 C15H32 70 

10 =9=9=2 C2oH42 71 
10 =3TH Butanal 72 
10 =4TH Pentanal 73 

10 = 5TH Hexanal 74 

10 = 6TH Heptanal 75 

10 =7TH Octanal 76 

10 = 8TH Nonanal 77 

1 0  MORM CH3-O-CH2CH 3 78 

10 MRORM (CH3CH2)20 79 

10 MRRORRM (CH3CH2CH2)20 80 

• . .  continued 
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Table 1 (continued) 

Acidity KLN code Chemical formula Compound no. 

10 MRA CH3CH2NH 2 81 
10 MRRA CH3CH2CH2NH 2 82 
10 MRRRA CH3CH3CHzCH2NH 2 83 
10 *RA Ph-CH2-NH 2 84 

10 MR*A CH3CH2-Ph-NH 2 85 
10 G*RA C1-Ph-CH2-NH 2 86 
l0 R2DRA CHz=CHCH2NH 2 87 

10 MRRK CH3CH2CH2OH 88 
10 MRRRK CH3(CH2)aOH 89 

10 MRRDKM CHa(CH2)2CHOHCH3 90 
10 D2DRRR) Cyclopentene 91 
10 D2DRRRR) Cyclohexene 92 
10 MTRM CH3COCH2CH3 93 

10 MRTRM (CH3CH2)2CO 94 
10 *TM Ph-CO-CH 3 95 
10 *RTM Ph-CH2-CO-CH 3 96 
10 R2DRM CH2=CHCH2CH 3 97 
10 MD2DRM CH3CH = CHCH2CH 3 98 

10 FCFFM FaCCH 3 99 
10 GCGGRK C13CCH2OH 100 
10 ARTK Glycine 101 
10 MDATK Alanine 102 
10 MDMDATK Valine 102 

10 MDM RDATK Leucine 104 
10 MRDM DATK Isoleucine 105 
10 KRDATK Serine 106 
10 MDKDATK Threonine 107 
51 KTRDATK Aspartic acid 108 

10 ATRDATK Asparagine 109 
48 KTRRDATK Glutamie acid 110 
10 ATRRDATK Glutamine 111 
10 A= 4DATK Lysine 112 
10 ARDKRRDATK Hydroxylysine 113 
30 C2DN2DE/RDATK Histidine 114 
10 AC2EERRRDATK Arginine 115 
10 *RDATK Phenylalanine 116 
10 K* RDATK Tyrosine 117 
10 D2DD2DC2C/ED2C/RDATK Tryptophan 118 
10 JRDATK Cysteine 119 
10 MS RRDATK Methionine 120 
10 DRRRE/TK Proline 121 
10 DRDKRE/TK Hydroxyproline 122 
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H\C_ / 
0 

Fig. 1. 

of the distance matrix in table 2(b). With this notation, each vector signifies a 
rooted tree in which the entire molecule is viewed from the perspective of a single 
reference atom. Due to the high degree of symmetry, compound 1 has only three 
different types of heavy atoms - each represented by its own vector descriptor 
(table 2(c)). Specifically, the six oxygen atoms are topologically equivalent, the 
three nitrogens are equivalent, and the carbon atom is unique within the molecular 
environment of compound 1. 

By sorting and combining the elements of the distance matrix, the information 
contained therein is compressed into the path matrix [P/j]. This procedure is repeated 
for each molecule of the data set. Next, all the rows of [P/j] are combined into one 
large cumulative matrix [PHI (see table 2 for an actual example based on com- 
pound 1). Finally, each row (vector) of [P/.t] is decomposed into all possible subunits, 
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Table 2(a) 

Distance matrix [D6] 

Atom 1 2 3 4 5 6 7 8 9 10 11 

1 0 2 1 3 2 4 4 3 4 4 3 
2 2 0 1 3 2 4 4 3 4 4 3 

3 1 1 0 2 1 3 3 2 3 3 2 

4 3 3 2 0 1 3 3 2 3 3 2 

5 2 2 1 1 0 2 2 1 2 2 1 

6 4 4 3 3 2 0 2 1 4 4 3 

7 4 4 3 3 2 2 0 1 4 4 3 
8 3 3 2 2 1 1 1 0 3 3 2 

9 4 4 3 3 2 4 4 3 0 2 1 

10 4 4 3 3 2 4 4 3 2 0 1 
11 3 3 2 2 1 3 3 2 1 1 0 

Table 2(b) 

Path matrix [P/j] 

Atom Vector descriptor 

1 1 2 3 4 0 0 0 0 0 

2 1 2 3 4 0 0 0 0 0 

3 3 3 4 0 0 0 0 0 0 

4 h y d r o g e n  a t o m  
5 4 6 0 0 0 0 0 0 0 

6 1 2 3 4 0 0 0 0 0 

7 1 2 3 4 0 0 0 0 0 

8 3 3 4 0 0 0 0 0 0 

9 1 2 3 4 0 0 0 0 0 
10 1 2 3 4 0 0 0 0 0 

11 3 3 4 0 0 0 0 0 0 

Table 2(c) 

Path matrix, cumulative [Pjr] 
(compound 1 only) 

1 2 3 4 
3 3 4 0 
4 6 0 0 

Table 2(d) 

Potential descriptors 
(from compound 1) 

1 
3 
4 
1 2 
3 3 
4 6 
1 2 3 
3 3 4 
1 2 3 4 
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each representative of one or more chemical substructures. The assemblage of these 
potential descriptors will then serve as an input file for the "expert system" analysis 
to follow. 

3. Expert system analysis 

The expert system analysis is a useful procedure when there exists a general 
lack of knowledge regarding causality yet a wealth of data detailing experimental 
observations [8]. Since the basis of chemistry itself is the explanation of molecular 
properties in terms of structure, it is assumed that the experimental data (biological 
properties) are also the consequence of specific structural features. The problem in 
processing the large amount of available experimental data is that the compounds 
involved are usually quite compex and the number of potentially important structural 
features is overwhelming. It is under these conditions that computer implemented 
expert system analysis is ideal [9]. The general procedure is to examine all possible 
structural features - a feat that is not really possible without the use of a computer 
due to the sheer amount of data generated. The potential descriptors are then sorted 
and ordered according to importance on the basis of one or more statistical parameters 
(described in the following section). A heuristic algorithm is then followed which 
selects the optimal topological structural feature or features. Having isolated the 
structural feature that apparently accounts for the activity of compounds in which 
it occurs, these compounds are then eliminated from the data set and the remaining 
compounds are then submitted to the same analysis. This procedure is continued 
repeatedly until either: 

(1) the entire data set is eliminated (i.e. various structural features have been 
revealed that account for the experimentally observed activities of all the 
compounds), or 

(2) all statistically relevant fragments have been isolated and the remaining data 
set (usually only a few compounds) is too small to provide any significant 
information. 

4. Methodology 

4.1. STATISTICAL PARAMETERS 

Two independent measures are employed for the statistical evaluation of data 
- one for the selection of the optimum parameter and the other to ensure the 
statistical significance of that parameter. The selection of parameters is based on 
a formulation by Laplace [10] and the establishment of statistical significance is 
based on binomial probabilities [11]. 

The optimum parameter selection is determined by an expression evolved 
from Laplace's work concerning the probability of future events. Laplace's "inverse 
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probability" or "probability of causes" is controversial in the sense that it does not 
satisfy the formal definition of  probability and is arrived at through an intuitive 
argument as opposed to a rigorous derivation. For our purposes, we implement a 
modification of  Laplace's expression simply to take advantage of  its favorable 
properties. We circumvent the previous controversy by merely viewing is as an 
"index of  likeliness" as opposed to a formal probability. The modified expression 
we use defines a normalized index identified as l(m): 

(a+  m) ( i+ m) 
l(m)= 1 - 4  (1) 

(a+  i+ 2m) 2 ' 

where a = number of  actives, i = number of  inactives, 4 = normalization constant, 
and m = adjustable parameter. The l(m) function is an attempt to quantify a rather 
qualitative and arbitrary entity, i.e. the amount of  skewedness which indicates a link 
between a structural feature (fragment) and consequent activity, thus serving as a 
precursor to the establishment of  causality. Thus, the larger the I(m) value for a 
descriptor, the stronger its association with either activity or inactivity. Adjustable 
parameter (m), also of  an arbitrary nature, is viewed as a "rate of  learning" constant 
whose optimal value was determined to be in the range from 0.01 to 10. 

Although l(m) serves to evaluate the "predictive potential" of  a fragment, it 
imparts no information concerning the statistical significance of  such a prediction. 
To establish statistical significance, binomial probabilities are calculated based on 
the fragment distributions of  actives and inactives as obtained from the data set 
(parent) distribution. The expression we employ is a summation over the relevant 
binomial probabilities - directly analogous to the probabilities calculated for the 
"coin toss" experiment. The probability calculated for some fragment (i) is: 

P.(x > xo) = ~ n! X g i l a  

x! (n -x ) !  p q ' (2) 
X=XO 

with 

X 0 = number of  active* compounds in which fragment i occurs, 

n = total number of  compounds containing fragment i, 

p = (number of  active compounds)/(total number of  compounds in entire 
data set), 

q = l - p .  

*The term "active" in the definition of x o and p can be replaced by the label "inactive" to evaluate 
inactive fragments. 
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4.2. DATA TREATMENT 

The selection of relevant submolecular descriptors from the large data pool 
is now discussed. Each row of matrix [PHI is identified as an SEV (structural 
environment vector) which is used to characterize each atom within a molecule. 
Each atom has also been assigned the activity of the molecule to which its belongs. 
We now follow a previously employed artificial intelligence algorithm [9] whereby 
the SEV elements are broken into their various subsets and each ttien tested for 
significance. For example, the row of [PH] that represents compound 1, atom 1 of 
the acid data base (table 1) is decomposed into the following SEV subsets - given 
together with the number of molecules that contain the same fragment: 

Compounds 
Fragment 

vector total active inactive 

[ 1 ] 76 38 38 

[ 1 2 ]  69 36 33 
[ 1 2 3 ]  17 11 6 
[ 1 2 3 4 ]  8 8 0 

Entire data 122 38 84 

This means that vector [1] occurred in 76 molecules, 38 of which were active 
(acids) and 38 inactive (non-acids). Thus, every SEV and its component subsets 
form a distribution that can be tested for statistical significance and evaluated for 
its potential usefulness as a predictive parameter. Calculating the index of skewedness 
l(m) and the binomial probability (BiP) according to eqs. (1) and (2) for these four 
fragments, we obtain the following values: 

Fragment I(m) BiP 
vector (m = 0.01) 

[ 1 2 3 4 ] 0.9950 0.0001 
[ 1 2 3 ] 0.0863 0.0045 
[ 1 2 ] 0.0019 0.0002 

[ 1 ] 0.0000 0.0005 

Thus, in comparing these four fragments, [ 1 2 3 4] has the largest l(m) and is therefore 
assumed to have greater predictive potential than the other three. The reason for this 
is that the distribution (8:0) indicates that if [1 2 3 4] is considered the sole criterion 
for activity, eight compounds are successfully accounted for and zero misclassifications 
result. In contrast, if any of the other three were the sole criterion, a high number 
of misclassifications would result. It is further noted that l(m) greatly distinguishes 
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[1 2 3 4] from the others, whereas BiP does not. In fact, according to BiP values, 
fragments [1] and [1 2] are comparable to [1 2 3 4] in terms of statistical significance 
(smaller BiP ~ greater significance). The important feature of the BiP values is that 
all four fragments are significant at a 95% confidence level (BiP < 0.05) and any 
small difference between them is of little consequence. If these in fact were our 
fragments of interest, we would conclude that [1 2 3 4] has the greatest predictive 
potential and also has an acceptable statistical significance. The other three fragments 
are also statistically significant, but of questionable use as predictive parameters. 

In the previous example, the choice between descriptors was straightforward 
due to the extreme variance in l(m) values. However, often the selection of optimal 
descriptors is not so well defined. In fact, multiple descriptors may even have the 
same activity distributions (number of actives versus number of inactives) and thus 
identical l(m) values. Such cases are encountered so frequently that the algorithm 
below is systematically applied whenever multiple potential descriptors are found 
to be significant yet are not selectively discriminated by the l(m) and BiP 
functions. The extensive use made of this flowchart as a reference in the selection 
and rejection of potential descriptors merits the labeling of the various alternatives 
(i.e. cases (i), (ii) . . . . .  (ix)) for convenient location of the appropriate path of logic. 
The rationale behind the flowchart - where not intuitively obvious - is further 
explained when it is applied to actual cases that arise in the analysis of data (see 
section 5). 

The flowchart represents the possible relationships between fragments [A] and 
[B], together with the resulting logical statements. ([A] and [B] are assumed to be 
activating fragments - for inactives, simply interchange c, x, e with d, y,f .)  The symbols 
used in the flowchart are defined below. 

c 

A , ~  

V,  U 

[A],[B] 

A 

B 

C 

d 

e 

f 

X 

Y 

subset; 

negation, complement (not); 

conjunction, intersection (and); 

disjunction, union (or); 

2 SEV descriptors; 

set of molecules containing [A]; 

set of molecules containing [B]; 

number of active molecules containing [A], but not [B]; 

number of inactive molecules containing [A], but not [B]; 

number of active molecules containing [B], but not [A]; 

number of inactive molecules containing [B], but not [A]; 

number of active molecules containing both [A] and [B]; 

number of inactive molecules containing both [A] and [B]. 
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Flowchart 

A B Assume [A] and [B] are activating 
fragments found to be statistically 
significant (same argument applies 
to inactive fragments, simply switch 
c:d, e:f, and x:y ) 

B c A 

(e = f = 0) 

no 

V 

Pr (A N B) 
is significant? 

I 
I 
I no 
I 
V 

[A] V [B] (viii) 

yes 

yes 
~ >  

yes ~ yes 
> ...... > .... > 

I I 
I Ino 
{no V 
{ [A] case(ii) 
V 

I 
Pr(A N B') I yes 

is significant? I ...... > 

I 
{no 
V 

[A] A [B] (iv) 

Pr (A N B') and 
Pr (B N A') 

are both 
significant? 

I 
Ino 
V 

yes 
..... > 

! 
Pr(A N B') I yes 

is significant? I .... > 

I 
Ino 
V 

Pr(B N A') 
is significant? 

I 
{no 
V 

[A] A [B] 

I yes 
. . . .  > 

(ix) 

[A] (iii) 

[A] V [B] 

[A] (vi) 

[B] (vii) 

[A] A [B] 
case ( i ) 

(v) 
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5. Application of methodology 

5.1. ACIDITY DATA 

In order to illustrate the methodology, we applied our analysis to the rather 
trivial task of  recognizing and predicting simple Lowry-Brons ted  acidity of 122 
randomly selected organic compounds. (Trivial in the sense that the mechanism and 
factors influencing acidity - electron withdrawal, resonance, etc. - are well understood.) 
However, such a well-known property is ideal for illustrating and validating a new 
methodology. Our goal here is to build-up a heuristic table (set of  rules) that employ 
graph-theoretical descriptors for the purpose of  determining the factors responsible 
for any particular activity of interest. 

We start by submitting a data file that will serve as a training set from which 
the program will "learn" the factors that contribute to acidity and those that do not. 
In order to accomplish this, the input data must contain "active" as well as "inactive" 
compounds, with the ideal data base contaifaing 50% of  each. The training set is 
shown in table 1 and contains the following, from left to right: 

acidity - t h e  relative acidities are based on Ka data [12] (extra- 
polated where necessary) and are rescaled from 10 through 90 
for the program (90 = most active) by the expression: acidity 
= - 1 0 p K a  + 9 0 ;  

KLN code - this is a linear coding system [13] in which different symbols 
represent atoms and/or functional groups; 

compound name - this column is not used by the program and merely serves as a 
convenience by which the user can represent a compound by any 
character sequence desired. 

The input data shown in table 1 produces a 1014 x 21 [PH] matrix, which in 
turn generates a list of  363 potential descriptors. At the first stage of the analysis, 
a search is made to find either fragments common to all the compounds or fragments 
common to all the active compounds of the data set. Vector [1], as indicated below, 
is just such a fragment. 

total active inactive 

data 122 38 84 

[ 1 ] 76 38 38 

The fact that all active molecules contain this simple vector allows us to conclude 
that a terminal heavy (non-hydrogen) atom is necessary foractivity and any molecule 
not meeting this criterion is classified as inactive, regardless of  any other factors. 
This is represented by the logical statement: 
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- [ 1 ] :=~ inactive, 

which is interpreted as "the absence of [1] implies inactivity". This statement alone 
eliminates 46 inactive compounds from the data set, having correctly classified 
them as inactive. 

Following the elimination of 46 inactive compounds, the remaing 76 molecules 
are subjected to the previously described analysis wherein the 636 rows of the 
reduced [PtJ] provide 256 potential descriptors to be evaluated in the second stage 
of the analysis. These fragment descriptors are sorted and ordered according to 
relevance to activity by the l(m) parameters. The SEV descriptors that emerge as 
the statistically best are given below: 

total active inactive 

76 38 38 

[2 2 3 3] 15 15 0 
[1 2 4 3 3] 12 12 0 
[2 2 3 3 3] 12 12 0 
[1 2 4 3] 18 17 1 

[2 2 3 3 3] is rejected since it is a subset of [2 2 3 3], as demonstrated by the 
following Venn diagram, and thereby provides no useful information (see case (ii) 
of flowchart). 

The same procedure is used to examine the relationship between descriptor [ 1 2 4 3] 
and its subset [1 2 4 3 3]. 

Here, the choice between descriptors is not as obvious as in the previous case, and 
we again rely on a statistical solution to the problem. Displayed in the table below 
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is the information that [1 2 4 3] accounts for more of  the data, but makes one false 
classification (i.e. one inactive compound would incorrectly be classified as active). 
On the other hand, subset [1 2 4 3 3], by being more restrictive, can account for a 
smaller percentage of  the data, but makes no false classifications. 

total active inactive BiP 

[1243] 
[1 2433]  

[ 1 2 4 3 ] n [ 1 2 4 3 3 ] '  

76 38 38 
18 17 1 
12 12 0 

6 5 1 0.109 

The last line of the above table is the evaluation of [1 2 4 3] as an independent 
descriptor. In other words, there are six molecules that contain [1 2 4 3] but do not 
contain [1 2 4 3 3], of  which five are active and one is inactive. If the probability 
of  this distribution (6:5 to 1) is high enough to be considered random, we would 
attribute the cause of  activity to [1 2 4 3 3]. However, the probability is low (BiP 
= 0.109) and we conclude that [1 2 4 3] is statistically significant even in the 
absence of [1 2 4 3 3] (see case (iii) of  flowchart). At this point, two vectors ([2 2 3 3] 
and [ 1 2 4 3]) have been linked to activity and the two subset vectors have been 
rejected, in accordance with the algorithm and statistical arguments. 

Next, the relationship between [2 2 3 3] and [1 2 4 3] is investigated. 

We now reject [1 2 4 3] as an "independent" descriptor since it is not significant in 
the absence of  [2 2 3 3]. However, all 15 compounds containing [2 2 3 3] also 
contain [1 2 4 3]. Thus, since we have no information on the statistical validity of 
[2 2 3 3] as an independent parameter (i.e. in the absence of  [1 2 4 3]), we recognize 
the limitation imposed by the data and simply conclude that both descriptors must 
be present for a statistically reliable classification to be made (case (iv) of  flowchart). 
This conclusion is represented as follows: 

[2 2 3 3] A [1 2 4 3] ----) "active" (activity = 46 + 5) 
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Table 3 

BiP ordering; total = 16, actives = 5, inactives = 11 

Total Active Inactive BiP Vector 

2 2 0 0.0977 1 2 3 
5 3 2 0.1800 4 6 
4 0 4 0.2234 3 4 
3 2 1 0.2319 3 3 
3 0 3 0.3250 3 4 3 
3 o 3 0.3250 3 4 3 1 
6 1 5 0.3936 3 6 
6 1 5 0.3936 4 2 
2 0 2 0.4727 3 7 
2 0 2 0.4727 1 3 3 
2 0 2 0.4727 3 4 5 
2 0 2 0.4727 3 4 6 

(see table 3 for  a chemica l  interpretat ion o f  the vec to r  descriptors) .  Since  the 
average  act ivi ty o f  the compounds  containing these two descr iptors  is 46.5 with a 
standard devia t ion o f  less than 5 activity units, the above  express ion  includes this 
informat ion.  This  case shows that al though the predict ions  are genera l ly  qual i ta t ive 

(active or inact ive) ,  it is possible to obtain semi-quant i ta t ive  results. 
At stage 3 o f  the analysis,  the fol lowing vectors  are found to be the best 

potent ial  descr iptors  and thereby qual ify for  fur ther  considerat ion.  It is noted that 
these vectors  are associated with inactivity.  

total active inactive 

61 23 38 

[4 5 3] 9 0 9 
[4 6 5] 9 0 9 
[4 5] 19 1 18 
[4 7] 19 1 18 
[1 2 4 5] 19 1 18 
[2 2 3 5] 19 1 18 

Since [4 5 3] is a subset  o f  [4 5], a compar i son  be tween them results in the re ject ion 
o f  [4 5 3] on statistical g rounds  (case (iii), inactive).  

total active inactive BiP 

61 23 38 

[4 5] 19 l 18 
[4 5 3] 9 0 9 

[4 5] n [4 5 3]' 10 1 9 0.062 
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[4 6 5] is now compared to [4 5]: 

[4 [ ~ ~  6 5] 

As is easily concluded from the this diagram, [4 6 5] is also rejected as a descriptor 
and [4 5] is retained (case (vi), inactive). [4 5] will next be compared to the other 
potential descriptors. First, the relationship between the three remaining vectors is 
diagrammed below. 

[1 4 5] [2 2 3 

From this, we readily conclude that: 

[1 2 4 5] A [2 2 3 5] A [4 7] ---> inactive 

(case (i), inactive - applied twice successively) 

Secondly, we examine the relationship of [4 5] to the intersection of the other three 
descriptors above. 

where A = [1 2 4 5] ~ [2 2 3 5] n [4 7]. Since both [A] and [4 5] are significant as 
independent parameters (case (v), inactive), we conclude stage 3 of the analysis 
with the statement: 
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([1 2 4 5] A [2 2 3 5] A [4 7 ] ) v  [4 5] ---> inactive, 

which eliminates 28 compounds (27 inactives, one active) from the data set. 
Stage 4 involves the evaluation of only two potential vector descriptors. 

total active inactive 

34 22 12 
[1 23]  11 11 0 
[2 21 18 17 1 

I1 2 2] 

[1 2 3] is rejected since its binomial probability as an "independent" parameter (i.e. 
[1 2 3] n [2 2]'] is not considered significant (BiP = 0.42), whereas [2 2] is considered 
independently significant (BiP = 0.12). Therefore, [2 2] is the substructural feature 
selected at this fourth stage of the analysis. As seen, it occurs in 18 molecules, 17 
of which are active (case (vii)). The qualitative conclusion is given in the expression 
below in the usual manner. 

[2 2] ---> active (act. = 56 + 18). 

At stage 5 of  the analysis, we find that none of the top I(m) value ordered 
vectors are statistically significant (at an 80% confidence level) and therefore are 
all rejected. Under these conditions, the methodology departs from the regular 
procedure and selects the vectors of lowest binomial probability provided they also 
meet the criterion of  being statistically significant. The top vector descriptors are 
listed in table 3 by order of statistical significance. As is evident, only the first two 
potential descriptors ([1 2 3] and [4 6]) are significant according to our standard. 
Thus, [ 1 2 3], although only present in two active molecules, is the most significant 
because the small remaining data set is skewed toward inactivity. This situation is 
indicative of the final stages of analysis, for at this point most of the data have been 
explained with considerable rigor. Now the last few compounds remain, and any 
additional descriptors selected will be of questionable validity due to the depleted 
data pool from which they are chosen. Be this as it may, [1 2 3] and [4 6] are 
selected in an attempt to correctly classify several active compounds that would 
otherwise be misclassified. The following table reveals the union of these two 
descriptors to be optimal, as indicated by an asterisk (case (viii)). 

total active inactive BiP 

16 5 11 
[1 2 3] 2 2 0 0.098 
[4 6] 5 3 2 0.180 
[46] n [ 1 2 3 ]  1 1 0 0.312 
[4 6] u [1 2 3] 6 4 2 0.081" 
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Stage 5 thus concludes the analysis with the statement: 

[1 2 3] v [4 6] ---> active. 

The  combined  use o f  the five logical  s ta tements  f rom each stage o f  the 
analysis  p rovides  cor rec t  c lassif icat ion o f  36 o f  the total 38 act ive compounds  and 
81 o f  the total  84 inact ives,  for  a 96% overal l  success rate. Th e  most  re levant  logical  
s ta tements ,  toge ther  wi th  their  chemical  interpretat ions,  are g iven in table 4. The  
familiar  chemical  functionali t ies (e.g. activating carboxyl ic  group, deactivating amino 
moie ty )  serve to help val idate the proposed  methodology .  

Table 4 

Chemical interpretation of acid data analysis 

Logical statement Classification 

true false 

Chemical interpretation 

- [1] --* inactive 

[2 2 3 3] m [1 24  3] --~ active 

46-  

15+ 

all active molecules contain a 
terminal heavy (non-hydrogen) 
atom 

, [1243] 
° 

I I \ 
O-H 
I [2 2 3 3] 

all carboxylic-containing molecules 
with terminal a-atoms 

([1 2 4 51 m [2 2 3 51 A [441) 
V [4 5] ---) inactive 

[2 2] =0 active 

27-  1- 

17+ 1+ 

[4 7] 
F t , [1245] 

I I / / 0  
- C - C - C  

I I "O-H 
/b in  i [2 2 3 51 

H H 

a-amino group deactivates the 
carboxylic group 

O / /  
C-C \ 

O-H 
I [2 21 
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5.2. N-NITROSO COMPUNDS - CARCINOGENIC ACTIVITY DATA 

The N-nitroso compounds are of particular pharmacological interest because 
of  their suspected active role in carcinogenesis [ 14]. The data in table 5 were taken 
from the literature [15] and serve as the learning data for the analysis. The data 
contain 45 active and 19 inactive compounds. The average activity is 36 - a value 
considered to represent moderate potency. 

The first step in the analysis identifies fragments [1 1 2] and [2 2] as being 
common to all the data molecules. Although neither descriptor is of  statistical 
significance, the absence of  either of  these fragments leads to the default label of  
"indeterminate", as indicated by expression (3): 

- [1 1 2] A - [2 2] ---) indeterminate. (3) 

Both these descriptors are associated with the nitroso functionality, as shown in 
table 6. Expression (3) can be viewed as a representation of  the congeneric nature 
of the data. 

Ordering of the statistically significant (BiP < 0.15) SEV descriptors according 
to their l(m) values produces the following: 

SEV total active inactive 

[4 2 4] 7 7 0 
[1 3] 5 5 0 
[1 2 4] 5 0 5 

All data 64 45 19 

Although the data are highly skewed toward activity, the BiP calculation (see section 
4.1, eq. (2)) involves terms (p and q) that allow for the fair evaluation of statistical 
significance even under such unfavorable circumstances. The relationship between 
the first two SEVs is shown: 

[4 2 4] ~I 3] 

The independence of  these descriptors is clearly indicated (case (viii)). Expression 
(4) is the obvious conclusion (see table 6 for actual chemical functionalities). 
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Table 5 

Learning data set for the analysis of N-nitroso compounds 

Active KLN code Compound name 

45 RRRRRN/U 
39 MDRRRRN/U 
45 RDMRRRN/U 
45 RRDMRRN/U 
10 MDRRRDMN/U 
25 RDMRDMRN/U 
10 MCMRRRCMMN/U 
39 RRDC2DD2DD2D)RRN/U 
10 RRDCMMMRRN/U 
45 RDKRRRN/U 
45 RRDKRRN/U 
45 RRTRRN~ 
10 KTDRRRRN/U 
10 RRDTKRRN/U 
55 RRDGRRN/U 
55 RDGDGRRN/U 
55 RDBDBRRN/U 
55 RRD2DRN/U 
10 RCTOM2DRRN/U 
10 DDC2DD2DD2D)TOM RR RRN/U 
39 RRRRN/U 
10 MDRRDMN/U 
55 RDGDGRN/U 
10 KTDRRRN/U 
10 KTDRDKRN/U 
39 RD2DRN/U 
45 RRORRN/U 
55 RDMODMRN~ 
39 RRSRRN/U 
10 MDDC2DD2DD2D)ORRN/U 
45 RRNURRN/U 
55 MDRNURRN/U 
45 MDRNUDMRN/U 
55 MDRNURDMN/U 
10 MDDMNUDMDMN/U 
55 NRRNURRR/U 
10 RRNHRRN/U 
10 RRNMRRN/U 
45 RRRN/U 
55 RRRRRRN/U 

Nitroso-piperidine 
2-methyl-nitroso-piperidine 
3-methyl-nitroso-piperidine 
4-methyl-nitroso-piperidine 
2,6-dimethyl-nitroso-piperidine 
3,5-dimethyl-nitroso-piperidine 
2,2,6,6-tetramethyl-nitroso-piperidine 
4-phenyl-nitroso-piperidine 
4-ter t.butyl-nitroso-piperidine 
3-hydroxy-nitroso-piperidine 
4-hydroxy-nitroso-piperidine 
4-keto-nitroso-piperidine 
2-carboxy-nitroso-piperidine 
4-carboxy-nitroso-piperidine 
4-chloro-nitroso-piperidine 
3,4-dichloro-nitroso-piperidine 
3,4-dibromo-nitroso-piperidine 
Nitroso-l,2,3,6-tetrahydropyridine 
Nitroso-guvacoline 
Nitroso-methylphenidate 
Nitroso-pyrrolodine 
2,5-dimethyl-nitroso-pyrrolidine 
3,4-dichloro-nitroso-pyrrolidine 
2-carboxy-nitroso-pyrrolidine 
2-carboxy-4-hydroxy-nitroso-pyrrolidine 
Nitroso-3-pyrroline 
Nitroso-morpholine 
2,6-dimethyl-morpholine 
Nitroso-thiomorpholine 
Nitroso-phenmetrazine 
Dinitroso-piperazine 
2-methyl-dinitroso-piperazine 
2,5-dimethyl-dinitroso-piperazine 
2,6-dimethly-dinitroso-piperazine 
2,3,5,6-tetramethyl-dinitroso-piperazine 
Dinitroso-homopiperazine 
Nitroso-piperazine 
4-methyl-nitroso-piperazine 
Nitroso-azetidine 
Nitroso-hexamethyleneimine 

•..continued 
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Table 5 (continued) 

Active KLN code Compound name 

55 RRRRRRRN/U 
45 RRRRRRRRN/U 
39 RRRRRRRRRRRRN/U 
55 MNUM 
55 MRNURM 
45 GRRNURRG 
10 N3CRRNURRC3N 
45 MORRNURROM 
45 MRORRNURRORM 
10 MRODORMRNURDORMORM 
39 MDMNUDMM 
10 MRDMNUDMRM 
55 MRRNURRM 
39 RKRNURRK 
45 MTRNURTM 
10  MONMU 
39 MNURM 
45 MNURRRRRRRRRRM 
45 MNURRRRRRRRRRRM 
10 MRRRRRRRNURRRRRRRM 
55 MNURRC2DD2DD2D) 
55 MNURCMMM 
45 C2DD2DD2D)NUM 
45 MNUDRRRRR/ 

Nitroso-heptamethyleneimine 
Nitroso-octarnethyleneirnine 
Nitroso-dodecamethyleneimine 
Dimethyl-nitrosamine 
Diethyl-nitrosamine 
bis-(2-chloro)-diethyl-nitros amine 
bis-(2-cyano)-diethyl-nitrosamine 
bis-(2-methoxy)-diethyl-nitrosamine 
bis-(2-ethoxy)-diethyl-nitros amine 
bis-(2,2-diethoxy)-diethyl-nitrosamine 
Di-isopropyl-nitrosamine 
Di-sec.butyl-nitrosamine 
Di-n.propyl-nitros amine 
bis-(2-hydroxy)-n.propyl-nitrosamine 
bis-(2-oxo)-n.propyl-nitrosamine 
Nitroso-methoxy-methylamine 
Nitro so-methyl-ethylamine 
Nitroso-methyl-undecylamine 
Nitroso-methyl-dodecylamine 
Nitro so-di-n.octylamine 
Nitroso-methyl-2-phenyl-ethylamine 
Nitroso-methyl-neopentylamine 
Nitroso-methyl-phenylamine 
Nitro so-methyl-cyclohexylamine 

[424]  v [ 1  3] ~ active, (4) 

[4 2 4] ~ 48.4 + 6.5, (4a) 

[1 31 ~ 53.0 + 4.5. (4b) 

It is important at this point to emphasize the hierarchical nature of these 
logical statements. The descriptors of expression (3) ([1 1 2] and [2 2]) are both 
considered to be essential for activity classification due to the limitations imposed 
by the congeneric nature of the training data set. Thus, expression (4) could be more 
rigorously written as (4c): 

([4 2 4] V [13]) A [112]  A [2 2] --~ active. (4c) 
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Table 6 

Chemical interpretation of nitroso data analysis 

Logical statement Chemical substructure a) Chemical interpretation 

-[1 1 2] V - [ 2  2] ~ indeterminate 
\ 

N - N = O  
/ 

all training compounds 
contain nitroso group, 
the presence of this 
functionality is essential 
for activity predictions 

[4 2 4] --~ 48.4 + 6.5 

[1 3] ~ 53.0 + 4.5 

CI H3 (C,H) 

O = N - N - C H 2 - *  

(C,H) 

I 
C - C H - *  

(C1,Br) 

SEV originates from 
methyl substituent to 
nitroso N, activating 

see table 7(b) 

[1 2 4] --~ inactive 

C (C,H) 
(N,C) I / O - *  

* - C H - C  

\ \ 0  

see table 7(c) 

[4 6 4] ~ 48.5 + 5.8 

[1 1 2]/x [2 2] ~ 33.8 + 18.0 

CH2-CH 2 
/ 

N - N  /~ CH 2 \ * 
• . , ~ ,  

C * (N,C) 

see table 7(d) 

see first statement at top 
of table 

a) , indicates  that more than one type of atom is found at the position. 

However, rather than adhere to this cumbersome notation, the same result can be 
achieved by considering the order of selection of the logical statements to also be 
their hierarchic order. In other words, if the conditions of  expression (3) are satisfied 
(i.e. either [1 1 2] or [2 2] is absent), then the label "indeterminate" will be assigned 
to the molecule irrespective of the conclusions drawn from any of the other logical 
statements occurring lower in the hierarchy. 

The third remaining descriptor [ 1 2 4] is associated with inactivity and is also 
independent, as shown below: 
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[4 2 4 3 

] 

Statement (5) follows: 

[ 1 2 4 ]  --~ inactive. (5) 

Since all three SEVs are at the same level within the hierarchy, we have no statistical 
means of resolving the conflicting conclusions produced by statements (4) and (5) 
when a test compound is found to contain fragments that satisfy both conditions 
simultaneously (5a). 

([4 2 4] V [131) A [ 1 2 4 ]  --9 ? (5a) 

Although a rigorous solution requires more data, when such situations are occasionally 
encountered, the nature of the activity is considered in order to arrive at an "intuitive 
conclusion". Since carcinogenesis is the activity, in this case false positives are 
considered more tolerable than false negatives and the prudent resolution is therefore 
to replace the "?" in expression (5a) with an "active" label. Thus, statement (4) is 
considered to be above (5) in the hierarchy. 

Thus far, descriptors have been selected and associated with the activity/ 
inactivity of 17 molecules of the data set. After removal of these 17 compounds, 
the next stage of the analysis produces only one SEV descriptor of statistical 
significance. [4 6 4] occurs in 5 molecules, all of which are active. 

[4 64]  ~ active 45.8 + 5.8 (6) 

Considering the hierarchy established so far, statement (6) is valid if and only if 
the conditions of the previous statements (3)-(5)  are false. 

Upon removal of the 5 active compounds with [4 6 4], no fragment descriptor 
occurring more than twice is found to be statistically relevent (BiP < 0.20, 80% 
confidence). Although numerous of the fragments occurring only twice are "technically" 
significant (BiP = 0.11), this is undoubtedly more an arifact of  the depleted and 
highly skewed data pool than of any meaningful link with activity. For this reason, 
the methodology ignores only singly and doubly occurring fragments. This decision 
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Table 7(a) 

Compounds containing descriptor [4 2 4]. The atom of SEV origin is 
circled and the complete fragment is outlined. Activity is in brackets. 

(55) H~HETHY!-N I TROSAH INE 

~Jg) NITROSO-METHYL-ETHYLAHINE 

+i 7 
1 0 - -  t l  

\ 
12-- 13 

\ 
i 4 - -  15 

(45) N ITROSO-METHYL-UNOECYLAMI NE 

~ 7 \  e _ g\ 
t O - -  l i  

\ 
i2-- i3  

\ 
i4-- 15 

\ 
IB 

(45) NI TROSO-METHYL-OODECYLAMI NE 

{55) NI TROSO-METHYL-2-PHENYL-ETHYLAMINE 

7 

7~B 
/ \ 

'\ X/ 
l i - -  lO 

(55) NITROSO-METHYL-NEOPENTYLAMINE 

7 

/ 
--8 

|45) NITRDSO-HETHYL-CYCLOHE×YLAMINE 
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Table 7(b) 

Compounds containing descriptor [1 3]. The atom of SEV origin is 
circled and the complete fragment is outlined. Activity is in brackets. 

@@ 

' --~ ~ i.~2' / / 
H7 3 C14 ' 3 N4 

[55) 4-CHLORO-NITROSO-PIPERIDINE 

c~E"il ...... Nio ....... N8 

\ 

>7 

(55) 3,4-DICHLORO-NITAOSO-PIPERIDINE 

o l l  i ~ : .  ~ . 

7 

(55) 3, 4-DIBROMO-NITROSO-PIPERIDINE 

(45)  b Is- (2-CHLORO) -I~IETHYL-NITROSANINE 

(55) 3, 4-DICHLORO-NITROSO-PYRAOLIDINE 
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Table 7(c) 

Compounds containing descriptor [1 2 4]. The atom o f  SEV origin is 
circled and the complete fragment is outlined. Activity is in brackets. 

01U ,, NI] 6 

/ 
--7 

( ]0 )  2-CARBOXY-NITROSO-PIPERIDINE 

8 

(~0} 2-CARBOXY-4-HYDROXY-NITROSO-PYRROLI 

Oi~ NI! N9 

\\8 

(~0) 4-CARBOXY-NITROSO-PIPERIDINE 

,// 
\ 

0t er-" N|ll-'-- N17 14 
\ / 

l f ~ -  i S  

[~0) NITROSO-METHYLPHENIDATE 

5 

(I0) 2-CARBOXY-NITROSO-PYRROLIOINE 



214 G. Klopman, R.V. Henderson, Graph theory-based "expert system" methodology 

Table 7(d) 

Compounds containing descriptor [4 6 4]. The atom of SEV origin is 
circled and the complete fragment is outlined. Activity is in brackets. 

(45) NITROSO-PIPERIDINE 

OiO 

1 - - 2  

(551 DINITROSO-HOMOPIPERAZINE 

i 

(39) 2-METHYL-NITROSO-PIPERIDINE 

(45) 3-METHYL-NITROSO-PIPERIDINE 

P 

(45) 3-HYDROXY-N I TROSO-PI PERIDINE 
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is also based on the justifiable criticism [16] that many QSAR techniques lose 
credibility because they "overfit" the data by selecting too many parameters (descriptors) 
with respect to the number of data points (compounds). Therefore, at this final stage 
of the analysis, we attempt to extract what useful information there is remaining by 
isolating fragments common to all the remaining compounds and associating these 
descriptors with their average activity. Obviously, the fragments common to the 
entire data set (see expression (3)) are also common to the remaining data. The 
concluding statement is: 

[ 1 1 2 ] A [ 2 2 ]  ---> 33.8 + 18.0. (7) 

Alternatively stated, in the absence of any other information (i.e. none of the 
conditions of statements (3)-(6) are met by the test compound), the presence of the 
nitroso group alone ([1 1 2] A [2 2]) is sufficient for the active label and the numerical 
prediction of 33.8 + 18.0. 

The chemical interpretation of the SEV descriptors of statements(3)-(6) 
is given in table 6, and the compounds containing these descriptors are 
shown in tables 7(a)-7(d) with the specific active/inactive substructural features 
appropriately outlined. 

6. Conclusion 

A new graph theory-based methodology for use in SAR studies has been 
introduced and explained in detail. Starting with the input data that consists only 
of molecular activity and connectivity, submolecular descriptors are generated and 
statistically evaluated, with the final result being a collection of heuristic logical 
statements which relate chemical substructures with the activities that they presumably 
produce. Although the statistical treatment is based on qualitative (binary) activity 
data, frequently semi-quantitative results are obtained. A more rigorous QSAR for 
the development of "potency parameters" is currently being studied. In addition to 
its usefulness in probing the structure/activity link for compounds of known activity, 
the method is also capable of predicting the activity of untested compounds if 
provided with a training set from which it can "learn" the appropriate set of descriptors 
for the particular activity of interest. 

A rather unique feature of this methodology is the ease with which the graph- 
theoretical descriptors are translatable into chemically meaningful submolecular 
fragments. In numerous other techniques, such a direct correspondence is not at all 
possible. Therefore, in addition to its use as a "black box" for correlating numerical 
descriptors with activity, this method offers the even more. interesting possibility of 
relating specific chemical entities to activity. 
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